ASA/AICPA Joint Business Valuation Conference

Las Vegas - November 14, 2005

Scott A. Nammacher, ASA, CFA

Managing Director
Empire Valuation Consultants, LLC
Email: ScottN@Empireval.com

Agenda

- Overview
> Approaches
$>$ Standards, Levels and Core Premises of Value
- Methods and Paths To Value
- Capitalization of Income Method
- Discounted Cash Flows Method
- Premiums \& Discounts

Appendix

Primary Approaches

- Income Approach
> Capitalization of Historical Income/Cash Flows
> Discounted Future Income/Cash Flows (DCF)
- Market Approach
> Guideline Companies
> Guideline Transactions/M\&A Method
- Asset Approach
> Asset by Asset Revaluation
> Collective Revaluation (Excess Earnings Method)

Empire

Income Approach Methods

- Capitalization of Normalized Income/Cash Flows
> Converts a single "normalized" base economic income number to a value by dividing it by a "capitalization rate"
> Focus should be on cash flow
- Discounted Future Income/Cash Flows (DCF)
> Explicitly projects economic income/cash flow into the future until can "normalize" and capitalize a final year's base number
> Focus on cash flow - full financial projections best

Two Main Standards of Value

- Fair Market Value
"The price at which the property would change hands between a willing buyer and a willing seller when neither is acting under any compulsion to buy or sell and both have reasonable knowledge of the relevant facts."
- Fair Value
$>$ GAAP accounting: FMV at 100% control value.
> Litigation: The pro rata share of the enterprise value or asset value, with or without consideration for marketability of the asset/interest. Definition varies from state to state in litigation situations.

Basic Levels of Value for Equity Interests

Discount for lack of marketability

Non-marketable, Minority Interest
\$14 p/share
\$10 p/share
$\$ 6.50 \mathrm{p} /$ share

Empire
VALUATION CONSULTANTS

Core Valuation Concept

- Value is a Function of Expected Future Economic Returns = FORWARD LOOKING
> Timing of These Returns (assume annual)
> Size of Returns (\$ measure and growth)
> Risk Related to Returns (required rate of return)
- Future Returns are Discounted to a Present Value
> Time Value of Money Concept
- Implicitly by Capitalization Method
- Explicitly by DCF Method
- Should Generate Similar Values
> DCF should be close to other capitalization models, market and asset (except in liquidation) models, all things being consistent
> Wide divergences of value should prompt revisiting inputs for potentially inconsistent assumptions across methods

Core Concept: Time Value of Money

- Basic Example:
> Investor puts $\$ 1,000$ in bank for 2 years
> $\$ 1,000$ grows at rate of interest of $7 \% /$ year
> Investor gets $\$ 1,144.90$ back after 2 years
- $1,000 \mathrm{X} 1.07=1,070 \mathrm{X} 1.07=1,144.90$
> Willing to pay present value of $\$ 1,000$ today to get $\$ 1,145$ in 2 years if the risk of getting it is fairly priced at 7%
- Formula for Stream of Economic Income (for a specific number of years):

$$
P V=\sum_{i=1}^{n} \frac{E_{i}}{(1+k)^{i}}
$$

$P V=$ Present value
$k=$ Required rate of return
$n=$ Last period returns expected
$E_{i}=$ Economic income in each period
$i_{n}=$ Time periods return is expected
$\sum_{i=1}^{n}=$ Sum of returns over n periods
Empire

Time Value of Money (cont'd)

- Perpetual, Flat Income Stream Formula (preferred stock dividend)
> Prior Formula Converts to:

$$
\begin{array}{ll}
& \boldsymbol{P V}=\boldsymbol{E}_{\boldsymbol{1}} / \boldsymbol{k} \\
\text { Where: } & k=\text { discount rate (required return) on } E \\
& E_{1}=\text { next year's economic income }
\end{array}
$$

- Where Growth in Income Expected
> Subtract Growth Factor from Denominator
> Converts to "Gordon Growth" Model:

$$
P V=E_{0}(1+g) /(k-g)
$$

Where: $E_{0}=$ Earnings base today
$g=$ long-term expected growth in income/cash flows
$(k-g)=$ referred to as "Capitalization Rate"
Empire

Agenda

- Overview
- Paths to Value
> Direct to Equity
> Debt Free
- Capitalization of Income Method
- Discounted Cash Flow Method
- Premiums \& Discounts

Appendix

Empire

Two "Paths" to Value: Building Example

- Difference Between Sale Price and Equity Value

Sale Price in Total Based on Op CF

| Interest Bearing |
| :--- | :--- |
| Debt_ $\$ 250$ _ |

Total Invested Capital

Value Equity Directly based
On Net Equity Cash Flow

Direct to Equity
Empire

Annual Cash Flows By "Path"

Value of Annual Operating Free Cash Flows

Total Invested Capital Cash Flows

Empire

Example: Net Cash Flow to Equity

- Traditionally: Net income (after interest exp. \& taxes)
> Plus: deprec., amort., \& non-cash charges
> Less: working capital changes +/-
> Less: capital expenditures
> Plus: new debt incurred
> Less: principal repayments
- Note: If assume growth in total value in future and a constant debt to total value ratio - debt grows too and provides net positive cash flow!

Example: To Total Invested Capital - TIC

- Net Income
> Plus: deprec., amort., \& non-cash charges
> Less: working capital changes $+/-$
> Less: capital expenditures
> Plus: interest expense (after tax cost)
> Note: Can also tax effect EBIT to get "debt-free" NI
- Equals: cash flow available to debt \& equity holders (or net operating cash flows)
- To determine equity...subtract debt

Agenda

- Overview
- Paths to Value
- Capitalization of Income Method
> Cash flow base
> Working Capital \& Depreciation Issues
> Growth
> Discount Rates
- Discounted Cash Flow Method
- Premiums \& Discounts

Appendix
Empire

Income Approach - Capitalization Method

- Capitalization Method Converts a Single Normalized Cash Flow "Base" (E) into a Value for All Future Cash Flows
- Process
> Determine Normalized Base (E)
> Determine Expected Long-term Growth in Cash Flows (g)
> Determine Required Rate of Return by Investors (k)
> Apply Valuation Model - "Capitalization Model"

Capitalization Example: Direct to Equity

	2003	2004	2005	Historical Financials
Sales	\$625.0	\$650.0	\$676.0	Income Statement (Net of Interest \& Taxes)
Operating Inc. 19.9\%	\$124.7	\$129.6	\$134.8	
A/Tax Net Inc.	\$64.1	\$66.6	\$69.3	
Weightings	1.0	2.0	3.0	
Weighted Average NI			\$67.6	
Weighed Avg. Depreciation Exp.			\$53.2	Cash Flow Items Based On Calculated Estimates
Cap. Exp. Normalized	$07 \%)$		(\$56.9)	
Working Cap. Normalized to 4\% Growth Projected Principal Growth (4\%)			(\$3.0)	
			$\frac{\$ 10.8}{\$ 71.6}$	

Weighted Avg. Cash Flow: $\$ 71.6$ "Normalized" Cash Flow Base

Long-term Growth Rate (g):	$\mathbf{4 \%}$	Growth Rate
Cost of Equity (k):	$\mathbf{2 0 \%}$	Discount Rate

Value of Equity [1]: $\$ 466 \quad$ Unadjusted Value
[1] Capitalization Model: Gordon Growth Model: CF X $(1+\mathrm{g}) /(\mathrm{k}-\mathrm{g})$ CMPIRE

Cash Flow Base

- Determines 100% of value (before adjustments)
- Base should be "normalized" and adjusted to level of value being determined (control vs minority)
- Non-operating assets/liabilities impacts (expense/income) removed if treated separately
- Tax effecting
- Historical fluctuations if not properly normalized have major impacts on value
> Income base (to match "Path to Value")
> Depreciation to capital expenditures
> Working capital needs
> Debt service (if appropriate)
Empire

Cash Flow Base: Level of Value Adj.

- Minority interest level of value adjustments
> Normalize for historical items that will not continue/recur in future
> Normalize for excessive owner-officer compensation (if appropriate)
- Controlling interest level adjustments
> All of the above adjustments
$>$ Streamlining of operations (if appropriate)
> Synergistic Adjustments (if appropriate)
- Consolidation savings
- Lower financing costs
- Wider or deeper product sales channels, etc.

Cash Flow Base: Historical Weightings

- Determine appropriate weightings for adjusted historical years' performances
> Cyclical or unpredictable businesses - consider average of history
> Growing/declining businesses - consider weighted average historical method or latest 12 months
- High growth - consider DCF or two-tier model
> Judgment call based on character of business, outlook, predictability, etc.

Cash Flow Base: Normalizing Cash Flow

- Adjustments needed if long-term growth expected to be different than recent years
$>$ Profitability impact of change in growth
> Confirm proper treatment of tax amortization benefits or other cash flow benefits that may not be in perpetuity
> Determine correct relationship between capital expenditures and depreciation (never permanently a positive number if growing)
> Determine correct relationship between growth and working capital charge to cash flow

Cap. Exp. vs Depreciation vs Growth

- Capital Exp. vs Depreciation Calculator
> Based on MACRS depreciation schedule
Ratio of Capital Expenditures to Depreciation at Equalibrium

Five year Assets

Assumed LT Growth		
3.0%	105%	Reciprocal*

Seven year Assets

Assumed LT Growth		
3.0%	108%	Ratio
4.0%	110%	93%
5.0%	113%	91%
6.0%	116%	88%
7.0%	118%	86%
8.0%	121%	85%
9.0%	123%	83%
	81%	

* Reciprocal $=$ Depreciation as \% of Capex

Example: If Depreciation $=\$ 100$ in terminal year then Capex should $=\$ 107$, if mostly 5 -year assets with 4% growth assumed.

Working Capital "Calculator"

- Normalizing Working Capital Charge

HISTORICAL INPUTS:					
HISTORICAL SALES:	$\underline{\underline{2000}}$	$\underline{2001}$	$\underline{2002}$	$\underline{2003}$	$\underline{2004}$
RECEIVABLES:	$\$ 60.0$	$\$ 550.0$	$\$ 600.0$	$\$ 600.0$	$\$ 650.0$
INVENTORY:	$\$ 70.0$	$\$ 80.0$	$\$ 80.0$	$\$ 75.0$	$\$ 60.0$
PAYABLES:	$\$ 55.0$	$\$ 70.0$	$\$ 70.0$	$\$ 70.0$	$\$ 70.0$
OTHER CURRENT A.	$\$ 10.0$	$\$ 20.0$	$\$ 10.0$	$\$ 25.0$	$\$ 65.0$
OTHER CURRENT L.	$\$ 10.0$	$\$ 9.0$	$\$ 11.0$	$\$ 8.0$	$\$ 12.0$

CALCULATIONS:									
HIST									ANALYST
:---:									
DAYS REC									

LONG TERM SALES GROWTH ASSUMPTION:	4.00\%	WORKING CAPITAL AT SALES VOL	
base sales volume:	\$650.00	(\$74.8)	Sensitivities:
HYPOTHETICAL PRIOR YEAR SALES			3\% Growth: \$2.2
ASSUMING GROWTH ASSUMPTION:	\$624.00	(\$71.8)	4\% Growth: \$3.0
			5\% Growth: \$3.7

BASE WORKING CAPITAL INVESTMENT AT ASSUMED GROWTH RATE:
(\$3.0)
APPLICABLE IN CAPITALIZATION OF CASH FLOWS AND TERMINAL
VALUE CAPITALIZATION MODELS IN DCF

Capitalization Example: GROWTH RATE

	$\underline{2003}$	$\underline{2004}$	$\underline{2005}$	
Historical Financials				
Sales	$\$ 625.0$	$\$ 650.0$	$\$ 676.0$	
Income Statement				
Operating Inc. 19.9%	$\$ 24.7$	$\$ 129.6$	$\$ 134.8$	
A/Tax Net Inc.	$\$ 64.1$	$\$ 66.6$	$\$ 69.3$	
Weightings	1.0	2.0	3.0	Taxes
Weighted Average NI			$\$ 67.6$	
		$\$ 53.2$		
Weighed Avg. Depreciation Exp.		$(\$ 56.9)$	Cash Flow Items	
Cap. Exp. Normalized (107\%)	$(\$ 3.0)$	Based On Calculated		
Working Cap. Normalized to 4\% Growth	$\underline{\$ 10.8}$	Estimates		
Projected Principal Growth (4\%)	$\$ 71.6$			

Weighted Avg. Cash Flow:	$\$ 71.6$	"Normalized" Cash Flow Base
Long-term Growth Rate $(\mathrm{g}):$	$\mathbf{4 \%}$	Growth Rate

Cost of Equity (k): $\quad \mathbf{2 0 \%}$ Discount Rate
Value of Equity [1]: $\$ 466 \quad$ Unadjusted Value
[1] Capitalization Model: Gordon Growth Model: CF X $(1+\mathrm{g}) /(\mathrm{k}-\mathrm{g})$ CMPIRE

Long-term Growth Rate

- Captures value - PERPETUITY CASH FLOWS
> Forever is long time
> Must be sustainable on average
- Typically modest
> Inflation/GDP - 3\% to 4% recently
> Population changes (if applicable)
> Minor productivity improvements (if applicable)
> Ignore Anticipated Business/Asset Acquisitions
- Impact is significant

Long-term Growth Rate: Impact

x Growth in Earnings or CF Impacts Value in Major Way
» Subtraction from Discount Rate to Derive Multiples
» Impacts Income Approach and Market Approach
x Gordon Growth Model Example:

$$
\frac{\text { Dividends }(1+\text { growth })}{\text { (Equity Rate - growth) }}
$$

Examples:

$\frac{3 \% \text { Growth }}{}$	$\underline{6 \% \text { Growth }}$
$\frac{\$ 100 * 1.03}{(20 \%-3 \%)}=\$ 606$	$\frac{\$ 100 * 1.06}{(20 \%-6 \%)}=\$ 757$
$17 \%=6.1 \mathrm{X}$ Multiple	$14 \%=7.6 \mathrm{X}$

25% Increase in Value
Empire
VALUATION CONSULTANTS

Capitalization Example: discount rate

	$\underline{2003}$	2004	2005	Historical Financials
Sales	\$625.0	\$650.0	\$676.0	Income Statement (Net of Interest \& Taxes)
Operating Inc. 19.9\%	\$124.7	\$129.6	\$134.8	
A/Tax Net Inc.	\$64.1	\$66.6	\$69.3	
Weightings	1.0	2.0	3.0	
Weighted Average NI			\$67.6	
Weighed Avg. Depreciation Exp. Cap. Exp. Normalized (107\%)			\$53.2	Cash Flow Items
			(\$56.9)	
Working Cap. Normalized to 4\% Growth			(\$3.0)	Based On Calculated
Projected Principal Growth (4\%)			$\frac{\$ 10.8}{\$ 71.6}$	Estimates

Weighted Avg. Cash Flow: $\$ 71.6$ "Normalized" Cash Flow Base

Long-term Growth Rate (g):	$\mathbf{4 \%}$	Growth Rate

Cost of Equity (k):	20%	Discount Rate

Value of Equity [1]: $\quad \$ 466 \quad$ Unadjusted Value
[1] Capitalization Model: Gordon Growth Model: CF X $(1+\mathrm{g}) /(\mathrm{k}-\mathrm{g})$ CMPLRE

Cost of Equity - Spectrum of Returns

- Spectrum of Returns from Financial Markets:
> Risk-free Government Debt Yields: 4\% to 5\%
$>$ Preferred Stock Div. Yields 5% to 8%
$>$ Corporate Bond Yields 5\% to $10 \%+$
>S\&P 500 Size Company Returns* 12% to 14%
> Small Public Co. Equity Returns* 17% to 25%
> Venture Capital Investments* 25% to 70%
* Long-term averages with many exceptions

Empire

Determining an Equity Rate

- Build-up Method*
- Capital Asset Pricing Model - See Appendix
> Numerous versions*
- S\&P's (Now Duff \& Phelps') Risk Premium Studies See Appendix
- Others - Arbitrage Pricing Theory
*See Ibbotson Associates Publications
Empire

Cost of Equity = k : "Build-up Method"

- Basic Rates from Ibbotson Associates SBBI Guides:
> Current Risk Free Rate (20-Year) 4.8\%
$>$ Large Cap Equity Premium 7.2 (1926 to 2004)
$>$ Small Cap Equity Premium $\quad 6.4$ (1926 to 2004)
> Basic Small Cap Stock Rate: $\mathbf{1 8 . 4 \%}$
- Company Adjustments:
> Additional risk for size, product mix, geographic limitations, customer risk, and/or other factors $\underline{2.0 \%}$
$>$ Company specific equity rate $\left(k_{e}\right): \mathbf{2 0 . 4 \%}$ or $\underline{20 \%}$ for examples

Empire

Capitalization Model Calculation

Direct to Equity Path:

$$
\begin{aligned}
\mathrm{PV}_{0} & =\frac{\mathrm{E}_{0} *(1+\mathrm{g})}{(\mathrm{k}-\mathrm{g})} \\
\mathrm{PV}_{0} & =\frac{\$ 71.6 *(1+.04)}{(.20-.04)} \\
& =\$ 465.7 \text { (equity) }
\end{aligned}
$$

Gordon Growth Model

Empire

Cap Model: Gordon Growth Model

Direct to Equity Path

$$
\mathrm{PV}_{\mathrm{t}}=\frac{\mathrm{ECF}_{\mathrm{t}} *\left(1+\mathrm{g}_{\mathrm{n}}\right)}{\left(\mathrm{k}_{\mathrm{e}}-\mathrm{g}_{\mathrm{n}}\right)}
$$

To Invested Capital:

$$
\mathrm{V}_{\mathrm{t}}=\frac{\text { DFCF }_{t} *\left(1+\mathrm{g}_{\mathrm{n}}\right)}{\left(\mathrm{WACC}^{2}-\mathrm{g}_{\mathrm{n}}\right)}
$$

$\mathrm{V}_{\mathrm{t}} \quad=$ Value at time t
$\mathrm{ECF}_{t}=$ Equity Cash Flow
DFCF = Debt-free Cash Flow
$\mathrm{K}_{\mathrm{e}} \quad=$ Cost of Equity
WACC $=$ Weighted Average Cost of Capital
$\mathrm{g}_{\mathrm{n}} \quad=$ Long-term normal growth rate
Empire

WACC is a Bit More Complicated

- Determine appropriate equity rate
- Determine appropriate fixed-rate cost of debt
- Determine appropriate weighting to give to the debt as \% of total capital mix
> Look to industry levels in control situations
> Look to company historical levels - "iterative method"
> Discuss leverage outlook with management
- Generate a Weighted Average Cost of Capital (WACC)
$\mathrm{WACC}=$ Equity Rate X Weighting +
A/tax Long-term Debt Cost X Weighting
Empire

WACC Calculation - Example

- Inputs
> Cost of Equity: 20\% (at this level of debt)
> Cost of Debt: 7.0\% (fixed-rate, long-term)
> Tax Rate: 40\% (marginal)
> Debt to Capital Ratio: 35\% (per examples)

WACC=Eq. Rate X Weighting $+\mathrm{A} /$ tax Debt Cost X Weighting

$$
14.47 \%=20 \% \text { X } 65 \%+((1-40 \%) \times 7.0 \% \text { X } 35 \%)
$$

Empire

Capitalization Example:"Debt-free Path"

	$\underline{2003}$	$\underline{2004}$	$\underline{2005}$	Historical Financials
Sales	$\$ 625.0$	$\$ 650.0$	$\$ 676.0$	
Operating Inc. 19.9%	$\$ 124.7$	$\$ 129.6$	$\$ 134.8$	Income Statement
A/Tax Net Inc.	$\$ 74.8$	$\$ 77.8$	$\$ 80.9$	(No Interest Subtracted)
Weightings	1.0	2.0	3.0	
Weighted Average NI			$\$ 78.8$	
Weighed Avg. Depreciation Exp.		$\$ 53.2$	Cash Flow Items	
Cap. Exp. Normalized (107\%)	$(\$ 56.9)$	Based On Calculated		
Working Cap. Normalized to 4\% Growth	$(\$ 3.0)$	Estimates (no debt adj)		
Projected Principal Growth (4\%)	$\underline{\$ 0.0}$			

Weighted Avg. Debt-free Cash Flow: \$72.1 "Normalized" Cash Flow Base
Long-term Growth Rate: $\quad \mathbf{4 \%}$ Growth Rate
WACC at 35% D/Capital: $\mathbf{1 4 . 5 \%}$ Discount Rate

Value of TIC [1]:	$\$ 716$	Debt Subtraction
Less Debt:	$\frac{\mathbf{(\$ 2 5 0)}}{\$ 466}$	To Get Equity
Net Equity (b/Adjustments)	$\$ 1$	

[1] Gordon Growth Model: DFCF X $(1+\mathrm{g}) /($ WACC-g)
Empire
VALUATION CONSULTANTS

Discount Rates - Common Errors:

- Mismatches of discount rate with definition of projected cash flow streams (e.g., apply after-tax cash flow discount rate to pretax income)
- Use floating rate cost of debt for company as a surrogate for the fixed-rate borrowing costs
- Use book value of equity to determine debt to total capital (debt + equity) instead of market levels
- Use debt to total capital ratio that reflects control, in a minority interest situation
> Consider an iterative process (see DCF section)

EMPIRE

Cap Models: Two-Stage Growth Models

Direct to Equity:
$\left.\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{NCF}_{\mathrm{tE}} *\left(1+\mathrm{g}_{\mathrm{n}}\right)}{\left(\mathrm{k}_{\mathrm{e}}-\mathrm{g}_{\mathrm{n}}\right)}+\frac{\mathrm{NCF}_{\mathrm{tEq}}}{\left(\mathrm{k}_{\mathrm{e}}-\mathrm{g}_{\mathrm{n}}\right)} * \mathrm{~g}_{\mathrm{n}} * \mathrm{~g}_{\mathrm{n}}\right)$
To Invested Capital:
$\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{NCF}_{\mathrm{tIC}} *\left(1+\mathrm{g}_{\mathrm{n}}\right)}{\left(\mathrm{WACC}-\mathrm{g}_{\mathrm{n}}\right)}+\frac{\mathrm{NCF}_{\mathrm{tIC}} * \mathrm{H}^{*} *\left(\mathrm{~g}_{\mathrm{n}} \mathrm{g}_{\mathrm{n}}\right)}{\left(\mathrm{WACC}-\mathrm{g}_{\mathrm{n}}\right)}$
$\mathrm{H}=$ half-life of high growth phase $(5 \mathrm{yrs}=2.5)$
$\mathrm{g}_{\mathrm{h}}=$ high growth rate
$\mathrm{g}_{\mathrm{n}}=$ long-term normal growth rate

Agenda

- Overview
- Paths to Value
- Capitalization of Income Method
- Discounted Cash Flow Method
> Overview/Review
> Projections
> Discount Rate and Terminal Value
- Common Errors
- Premiums \& Discounts

Appendix
Empire

Discounted Cash Flow: Overview

- Most Versatile of Methods
> Can explicitly forecast future cash flows of almost any financial asset or liability
- Applied Across Many Types of Valuations
> Key in Financial Reporting Valuations
> Tax Reporting
> Transactions and Litigation
- Large Potential for Error or Manipulation, and Misunderstandings as to Impacts of Assumptions

Discounted Cash Flow: Overview

- DCF Process
> Projected near-term cash flows (until stabilized)
> Determine horizon value (value beyond proj. period)
- Capitalize last year's cash flows w/Gordon Growth Model
- Many other methods
> Discount cash flows \& horizon value to present, at appropriate discount rate (based on "path" to value)

DCF Overview: When to Use DCF?

- DCF Method Useful When:
> Business in industry amenable to forecasting
- Non-commodity
> When future cash flows expected to be materially different than recent past
- Otherwise redundant with capitalization method
$>$ When history difficult to determine or get
- Divestiture of subsidiary
- Turnaround or startup situations
- Transactions with changed assumptions, etc.

Overview: Key DCF "Components"

	2006	$\underline{2007}$	$\underline{2008}$	$\underline{2009}$	$\underline{2010}$	Projectio
Sales	690.0	717.6	746.3	776.2	807.2	Projection
Operating Inc. 19.9\%	137.6	143.1	148.9	154.8	161.0	Income Statement
A/Tax Net Inc.	82.6	85.9	89.3	92.9	96.6	(Op. Income A/Taxes)
Depreciation	55.0	57.2	59.5	61.9	64.3	
Cap. Exp.	-58.9	-61.2	-63.7	-66.2	-68.8	Cash Flow Items
Wkg. Cap.	-3.1	-3.2	-3.4	-3.5	-3.6	driven by Balance
Proj. Debt Service	$\begin{array}{r} 0.0 \\ 75.6 \end{array}$	78.6	$\frac{0.0}{\mathbf{8 1 . 8}}$	$\frac{0.0}{85.1}$	$\underline{\mathbf{0 . 0}}$	Sheet Changes
Debt Free CF:	75.6	78.6	81.8	85.1	$\frac{878.7}{967.2}$	Terminal Value \& Cash Flows
WACC Rate: (Year end discounting)Long-term Growth Rate					$\begin{array}{r} 14.5 \% \\ 4.0 \% \end{array}$	WACC Rate
					Growth Rate	

Net Present Value Debt Free CF: \$722.3
Less Long-term Debt:
Net Equity Value:
$\$ 250.0$
$\$ 472.3$

Debt-free Value Less Debt and Other Adjs.
[1] Terminal Value Model: Gordon Growth Model: WACC X $(1+\mathrm{g}) /(\mathrm{WACC}) \mathrm{MPIRE}$ Assumes approx. 35\% D/Capital

WACC Calculation: Iteration Example

- Inputs
$>$ Cost of Equity: 20\% (at this level of debt)
$>$ Cost of Debt: 7.0\% (fixed-rate, long-term)
> Tax Rate: 40\% (marginal)
> Debt to Capital Ratio: 35\% (per examples)
WACC $=$ Eq. Rate X Weighting $+\mathrm{A} /$ tax Debt Cost X Weighting
$14.45 \%=20 \%$ X $65 \%+((1-40 \%) \times 7.0 \%$ X $35 \%)$
- Minority Interest Situations
> First Guess Usually Not Correct

Empire

WACC Iteration Example*

Minority Interest Valuation Issue:

Minority interest holder can not impact debt levels so Debt/Cap ratio you start with may not be same as the results the models are giving you!

Iteration	Initial WACC Debt/Cap	TIC Value		Revised Debt/Cap [1]
\#1		30/100	$\$ 671$	$37 / 100$
$\# 2$	$37 / 100$	$\$ 745$	$34 / 100$	
$\# 3$	$34 / 100$	$\$ 711$	$35 / 100$	
$\# 4$	$35 / 100$	$\$ 722$	$35 / 100$	

*Assumes: Debt $=\$ 250$, DCF examples shown earlier
[1] Example: $\$ 250$ debt $/ \$ 671$ TIC $=37 \%$ ratio
Empire
VALUATION CONSULTANTS

- Difference Between DCF and Cap of CF Values

Value from Debt-free

Value Equity Directly based On Net Equity Cash Flow

Interest Bearing Debt $-\$ 250$

Total Invested Capital Less Debt via DCF

Direct to Equity
Empire
VALUATION CONSULTANTS

DCF Projections: Why Do Full Forecasts?

- Cash Flows are Key Valuation Measure
$>$ Ibbotson return data relates to cash flows
$>$ Cleanest measure of economic income to investors
> Most appraisers underestimate required investment in businesses over time, particularly in the "terminal value" calculations
> Affords appraisers ability to explicitly examine assumptions and their impact on cash flow

DCF: What to Forecast?

- Type of Analysis Being Done
$>$ Level of value
- Control adjustments to financials
- Minority
$>$ Paths to value
- Direct-to-equity - net of debt service
- Total invested capital

EMPIRE

Beware of the "Hockey Stick" Forecast

Empire

Projected Operating Income

- Need solid reasons for rapid changes in revenues and operating income (margin creep)
- Reasonableness Check: Consistent with public company levels or own restated history (particularly if start-up situation with high op. inc. projected later...high tech cos.)
- Calculate/check depreciation \& amortization separately
> May have to revise as analysis proceeds
- Know what went into the projections
> Client projections may intermix key expenses (e.g., int. exp., deprec., owner perks) without breakouts

Empire

Sources for Insights into Projections

- Management estimates or projections
- Historical performance of subject company
- Historical performance of public, guideline companies
- 10-K discussions on industry trends from guideline companies
- Analyst (e.g., I/B/E/S) estimates for guideline companies or industry
- Government - industry growth estimates
- Internally generated growth - self funding ability

Balance Sheets - Function in Valuation

- Allows for analyzing and tracking all working capital accounts (including cash)
> Historically
> Projected basis
- Validates capital exp. and depreciation ratios going forward
> Explicit forecast of PP\&E
- Tracks other non-current assets/liabilities levels that the company needs to operate
- Tracks debt assumptions if appropriate

Balance Sheets - Forecasting Issues

- Minor misalignments in depreciation and capital expenditures potentially cause major issues
- Issue occurs with most client projections

SAMPLE COMPANY

		1	$\underline{2}$	3	4	$\underline{5}$	Terminal
SALES		1,000	1,200	1,440	1,699	1,954	2,149
Growth		1	20\%	20\%	18\%	15\%	10%
PP\&E		200	190	178	164	147	127
CAPITAL EXPENDITURE		50	60	72	85	98	107
\% of Sales	5\%						
DEPRECIATION		60	72	86	102	117	129
$\%$ of Sales	6\%						
NET PP\&E		190	178	164	147	127	114
SALES/NET PP\&E		5.26	6.74	8.80	11.59	15.38	18.87

Empire

Balance Sheets - Forecasting Issues

- Tricky Areas:
> Debt and working capital
- Short and long-term debt forecasting
- "Path to value" determines treatment
> Depreciation/Amortization
> Excess Assets/Liabilities
> Cash balances
- Requirements of business - rest "distributed" for value
> Terminal (or normalized) year cash flows in high growth to lower growth situations

Empire

Cash Flow Statement Projections

- Ties projections together so all are functioning properly
- Easy place to spot anomalies in cash flows and trouble shoot unbalanced balance sheet forecasts/histories

Empire

Application of the Discount Rate

- Generally applied consistently across all projected years
> Can be recalculated annually - where debt expected to fall radically over the projection period
- Discount factors and cash flows adjusted for partial years, where needed
- Terminal Value discounted from end of projection period
- Mid-year convention (vs end-of-year) used by some
> Assumes cash flows received during year instead of at year end
> Many companies do not pay out distributions over year (RE: minority interest situation generally)

Terminal Value

- Apply Capitalization Model to Normalized Final Year of Projections
> Normalizing removes impacts of higher/lower growth in last year for working capital, capital investments, etc. that are larger or smaller than long-term relationships to profit and cash flows
- See Earlier Discussion for Model Details

Empire

Income Statements - Common Errors

- "Hockey Stick" projections w/out consideration to history, capital requirements and market realities
> Revenue Rocket
"FREE GROWTH"
Problem
> Margin Creep
Overstates Value
> Off the Books Revenue/Income
- Improper add backs for level of value being considered
- Non-operating asset/liability impacts on earnings not eliminated from income or expenses

Balance Sheets - Common Errors

- Depreciate PP\&E to negative or insupportably low numbers given growth in revenues over projection period
> Look at NET PP\&E to sales ratio over time to check
> Capital expenditures usually understated for depreciation taken
- Ignore smaller but important working capital accounts (both asset and liabilities)
- Overly aggressive changes in required current assets or liabilities
> Reductions in Accts. Rec. from 60+ days to 30 days or vice versa for Accts. Pay, without adequate reasoning
> Inventory turns adjusted without consideration to margin impacts
- Ignore long-term net asset investments required
- Ignore deferred taxes if income statements not on tax basis

Empire

Agenda

- Overview
- Methods and Paths To Value
- Capitalization of Income Method
- Discounted Cash Flows Method
- Premiums \& Discounts

Appendix

Role of Premiums and Discounts

- Company Values Derived May Need Adjustments
> Non-operating Assets, Liabilities, etc.
> Level of Value
> Size and Rights of Interest Being Valued
> State Laws Regarding Purpose of Valuation
> Other Facts \& Circumstances of Situation

Premiums and Discounts

- Types of Adjustments
> Control Premiums
$>$ Lack of Control Discounts
> Marketability Discounts
> Key Person Discounts
> Blockage or Restricted Stock Discounts

Empire

Premiums and Discounts (cont.)

- Control Premium
> Merger/Acquisition data
- Minority Interest Discount
> Comparable company valuation equivalent for minority interest
> Markdown of control premium
- 25% premium $=20 \%$ minority discount (25/125)
- 35% premium $=26 \%$ minority discount (35/135)

Premiums and Discounts (cont.)

- Lack of Marketability Discount
> Pre-IPO studies
> Private placement studies
$>$ Cost of "going public"
> Hedging Costs
- Key Man Discount
- Blockage / Restricted Stock Discounts, etc.

Appendix

Empire

Capital Asset Pricing Model: Equity Rate

$$
\begin{aligned}
E\left(R_{i}\right)= & R_{f}+\left(B X R P_{m}\right)+R P_{s}+R P_{u} \\
E\left(R_{i}\right) & =\text { Expected Rate of Return on Common Equity } \\
R_{f} & =\text { Rate of Return on Risk Free Security } \\
B & =\text { Beta (many sources all different) } \\
R P_{m} & =\text { Risk Premium (S\&P 500) over } R_{f} \\
R P_{s} & =\text { Risk Premium over } R P_{m} \text { for size } \\
R P_{u} & =\text { Company specific (unsystematic) Risk }
\end{aligned}
$$

S\&P/Duff \& Phelps Risk Premium Studies

- Grabowski \& King Return Studies
> Based on company characteristics for size rather than betas for adjusting size premiums
> Size Measures:

Market Value of Equity	Book Value of Equity
5-Year Average Net Income	Market Value of Inv. Capital
Total Assets	5-Year Average EBITDA
Sales	Number of Employees

> Useful and available through Ibbotson Associates

Empire

ASA/AICPA Joint Business Valuation Conference

Las Vegas - November 14, 2005

Scott A. Nammacher, ASA, CFA

Managing Director
Empire Valuation Consultants, LLC
Email: ScottN@Empireval.com

